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Theoretical and Experimental Characteristics of
Single V-Groove Guide for X-Band
and 100 GHz Operation

YAT MAN CHOI, MEMBER, 1EEE, DOUGLAS J. HARRIS, aAND KIM-FUNG TSANG

Abstract —A conformal mapping technique for single-groove guide has
been discussed and applied to grooves of V-shaped cross section. Experi-
mental measurements at X-band and 100 GHz confirm the theoretical
predictions. The characteristic equation and scale factor of the fundamen-
tal mode have been developed, and its propagation characteristics are given
graphically for several normalized groove dimensions.

1. INTRODUCTION

ROOVE GUIDE is potentially attractive as a low-loss
Gwaveguide for frequencies above 100 GHz, where the
loss characteristics, dimensional tolerances, and power-
handling capacity of the more conventional guides such as
rectangular waveguide and microstrip become progres-
sively prohibitive. At frequencies above 100 GHz, this
guide becomes increasingly attractive, and a complete sys-
tem in groove guide including generation, transmission,
manipulation, and detection could be ideal. This guide as
shown in Fig. 1 has previously been analyzed and sum-
marized by a conformal mapping technique [1] which has
been applied to guides with grooves of V-shaped cross
section [2], and by a transverse resonance technique which
has been extended to obtain an approximate but adequate
solution for guides with grooves of rectangular cross sec-
tion [1], [3].

Harris [4] had shown experimentally that the V-groove
guide has propagation characteristics very similar to those
of the rectangular-groove guide, except that the attenua-
tion was lower and the rejection of higher modes was more
effective. However, theoretical analysis is more complex
and tedious.

It is well known that waveguide of any shape in cross
section can be mapped into a desired shape of cross
section for analysis. The transverse resonance technique
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Fig. 1. The grooved waveguide.

requires a known form of field expressions in the central
groove and evanescent regions. The conformal mapping
technique provides a direct analysis on the V-groove guide.
The present analytical approach is to transform the V-
groove guide into the parallel-wall guide filled with a
nonisotropic and nonuniform medium.

II. CoONFORMAL MAPPING TECHNIQUE FOR
SINGLE-GROOVE GUIDE

A. The Wave Equation for Grooves of Arbitrary
Cross Section

The grooved waveguide has been analyzed by a confor-
mal mapping technique [5] which is based on a comparison
of a deformed-wall guide containing no dielectric and a
real parallel-wall guide filled with a nonisotropic and
nonuniform medium (Fig. 2).

The wave equation for the latter guide is given by

Vv ®(x, y)+k2h*(x, y)@(x,y) =0 (1)

where k, = ki — B? is the cutoff wavenumber, h(x, y) is
the scaling factor of the conformal transformations be-
tween the two coordinate systems, and ®(x, y) is the wave
function. ®(x, y) = H,(x, y) and E,(x, y) for TE and TM
modes, respectively.

To transform the above solution from the Z space into
the U space, we have

h(x,y)®, ®,

h(x,y)®, [=|®, 2
® ®

z z
Whenever suitable solutions of ®(x, y) are found for the

pertinent boundary conditions, the transverse components
can readily be found by using Maxwell’s equations. The
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Fig. 2. Parallel-wall waveguide. (a) Deformed-wall guide. (b) Parallel-
wall guide with nonuniform and anisotropic medium.

last step in this procedure is to transform the above
solution from the Z space into the U space by using (2).

B. Grooves of V-Shaped Cross Section [2]

1) Scaling Factor h(x, y): The scale factor is obtained
by using the Schwartz—Christoffel theorem:

T 1/2—6/m
kr sin[?(x+jy)]—r0
hx,y)=|— o ' (3)
¢ sin[z(x+jy)]—1
where
b c+ ja
f“G(T)dT [*6(T)ar
-1 -1
T — p /207
o1y - _T=1)

(T-1)"""(T+1)"?
T= sin[%(x + jy)]
8 =tan"! (%)

Here a, b, ¢, and d are the dimensions of the guide as
defined in Fig. 1, and x and y represent the coordinates in
the parallel-wall guide. The manipulation for obtaining
this scale factor is described in the Appendix.

The determination of the constant #,, which depends on
the width 24 and depth 4 of the groove, is tedious, and
can be obtained with the following expression:

f_lG(T)dT et o
[Tle(Tyar b
-1

(4)

which is obtained by matching the boundary values before
and after the transformation in the complex planes. Plots
of ry versus d/2c, with 2a/2¢=0.4, and of r, versus
2a/2c, with d/2¢=0.6, are shown in Figs. 3 and 4,
respectively. Knowing A(x, y), we can find the longitudi-
nal terms of the relative permeability and permittivity,
which permit determination of the field distribution in the
groove guide from those in the dielectric-filled parallel-wall
guide according to Fig. 2.
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Fig. 5. Cross section of the hypothetical guide.

2) Secular Equation of the TE§ Mode: Assume that in
region A, where —a < y <a, the guide is filled with a
hypothetical medium as described by (2). In region B,
where y > |a| and h(x, y) =1, the guide is uniformly filled
(Fig. 5).
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The assumed solutions of the wave equation for the TE]

modes are expressed below. The factor exp(j(wt — Bz)),
which is common to - all of the field equations, will be
omitted for brevity.

In region A4,

ZA sm(kxAx)cos( yAy) (5a)

and in region B,

H.p= Y B,sin(k px)exp(—k,zy) (5b)

where

A,, B, amplitude constants of field components in re-
gions 4 and B, respectively,

k, = 2a/\ ., cutoff wavelength of the groove guide,

A, cutoff wavelength

k.4 = pw/2c, wavenumber in region A4,

k.p = rm/2c, wavenumber in region B,

k4 < gm/2a, wavenumber in y dlrecuon in re-
gion A,

Jjk,p ~ wavenumber in y direction in region B.

The dimensions of the guide, 2a and 2c, were given in

Fig. 1. ,

Using the first-order approximation ( p =r=1), there

are the following relations between the wavenumbers:
kn%A + k)%A = Kukcz"

(62)

k2g—klp=k’ (6b)
where
1
—_ + ——
ac( St )

f+cf+a 2(x , y)cos? ( )cos (Z)c])dydx.

The boundary conditions imposed between regions 4 and
B (y=a)are

(1) H, = H, for —c<x<c
(ii) H,,/dy=0H,;/dy for —c<x<c
(i) 0H,,/dy=0H,,/dy=0 atx=+c.

After applying the boundary conditions to the assumed
solution of the wave equatlon we obtain the followmg
secular equation:

k,p=k,qtan(k,,a).

o)

Equations (6a), (6b), and (7) can be solved for k,,, k 5,
and k, in the first-order approximation.
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Fig. 6. Graph of guide attenuation constant versus normalized groove
depth d /2¢ at 96 GHz.

II1.

A. Attenuation Constant

PROPAGATION CHARACTERISTICS

The attenuation constant for the V-groove guide is given
by [5]:

212
(fep/1)
ag=ag,[f./1. G
= ol e/ o] [ ~(£./f)
where
R,
a, = Zg[fcp/f]zll ~(f.,/7)?17V?, the attenuation
constant of an air-filled parallel-plane waveguide,
f., cutoff frequency of the parallel-plane waveguide,
f.  cutoff frequency of the groove guide,
f operating frequency,
G =A+ B(f/f)H1—-(f./f)?], a length factor

which could be calculated from the wave function
and in general 4> B, ‘
R, surface resistivity of the guide wall,
intrinsic impedance of free space,
2¢  plane separation of the paraliel-plane guide,
- A, B constants calculated from the wave function.

A plot of the guide attenuation constant versus d /2¢ at 96
GHz is shown in Fig. 6. It can be seen that the calculated
attenuation constant is very low compared to that of the

dominant-mode rectangular waveguide (2 dB/m at 100
GHz).

B. Cutoff Wavelength
Recall from (6b) that the cutoff wavelength A, is given

Tk T

Fig. 7 shows the cutoff wavelength versus the normalized
groove depth d/2c¢. It is seen that the guide is o»peratmg
well above the cutoff.
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C. Guide Wavelength
The guide wavelength A, is determined by
1 1 1

i.e.,

A= )
* A -
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Fig. 8 shows the guide wavelength versus the normalized
groove depth d/2c. It is seen that the theoretical guide
wavelength is slightly larger than the free-space wave-
length; i.e., the dispersion is low.

D. Wavenumbers

The wavenumbers k,, and k5 can be solved from (6a)
and (7). Figs. 9 and 10 show the product of k ,a and
k pa, respectively, versus the normalized groove half-width
a/2¢. From Fig. 9 the fraction of a sinusoid across the
groove half-width can be determined, while from Fig. 10
the attenuation in the y direction for a distance of half the
groove width can be determined.

IV. MEASUREMENTS OF THE PROPAGATION
CHARACTERISTICS OF SINGLE V-GROOVE
GUIDE AT 100 GHZ AND AT X-BAND

Measurement of the guide characteristics at 100 GHz
had been made at the University of Wales Institute of
Science and Technology, United Kingdom, using a reso-
nance technique with a movable short-circuited plunger
[3]. Measurements at X-band were conducted at the Hong
Kong Polytechnic, Hong Kong, using a resonance tech-
nique with a swept frequency source [2]. A block diagram
of the measuring system for single V-groove guide at

- X-band is shown in Fig. 11 and that at 100 GHz is given in

[3]-

The experimental and theoretical guide wavelengths A
of the guides under test are given in Tables I and II. The
correlation between theoretical and experimental values of
A, is very good indeed (within 0.4 percent at 100 GHz and
3.7 percent at X-band). A graph of guide wavelength
versus frequency at X-band is shown in Fig. 12. Since at
100 GHz a movable short-circuited plunger was used, the
errors due to the coupling holes of the end plates were
removed. Therefore, the error between predicted and mea-
sured guide wavelength is significantly higher in X-band
than at 100 GHz.

When the measured guide wavelengths A, are compared
with the operating wavelength A, at 100 GHz and at
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Fig. 11. Block diagram of measuring system for single V-groove guide
at X-band.
TABLE 1
GUIDE WAVELENGTHS AT Ay = 3.117 mm
Guide theoretical experimental
dimensions(*) calculations results % of
- g error
N }
2¢ a c Ag Ag
(mm) (mm) (mm) (mm) (mm)
10 2 ' 20,14 3,155 3.156 0.03
10 4 22.10 3.148 .. 3,146 0.06
10 6 22,51 3.147 3.136 0.35
12 2 24.01 3.144  ° 3.146 0.06
12 4 26.05 3.139 3.138 0.03
12 6 26.84 3.138 3.130 0.26
(*) Other guide dimensions: 2a = 2d; 2h = 60 mm.
TABLEII
GUIDE WAVELENGTHS AT X-BAND '
Guide Theoretical Experimental
dimensions calculations results % of
{em) error
£, Ao g m iy g
(GHz) (cm) (cni) (cm) (cm)
8.02 3.855 25 3.741  4.000 3.625
20=7.5 8.30 3.717 .26 3.615  3.846 3.354
d=4.5 8.53 3.611 27 3.517  3.704 2,511
2a= 3 8.87 3.465 28 3.382 . 3.571 2.968
2h= 60 9.15 3.355 29 3,279  3.448 2.697
1= 50 9.42 3.254 36 3.185 3.333 2.370 -
9.695 3.157 31 3.094 . 3.226 2.139
9,975 15.52 3.066 _ 32  3.008  3.i25 1.888
10.25 2.980 33 2,927 3,030 1,650
10.54 2.895 34 2,846 2.941 1.564
10.81 2.820 35 2,775 2.857 1.295
11.085, 2.748 36 - .2.706 2.778 1.079
11,375 2.676 37 2,637 2,703 0.999
11.67 2.607 38 2,571 2.632 0.949
11,97 2.539 39 2.506  2.564 0.975
12.26 2.501 40  2.469  2.500 0.040

X-band, it is seen that, as expected, the guides under test
will have relatively low dispersion, because both wave-
lengths are within 1.3 percent and 6.5 percent, respectively,
of each other.

When the measured moding spectra for different groove
dimensions at 100 GHz were examined, there is little
indication of higher order or rank modes:

a) for a plane separation of 10 and 12 mm and right-
angled V-groove depths of 2 mm-to-6 mm; and

b) when -a 50 cm length of guide is dlstorted to give
central plane separation up ‘to 12 mm from 10 mm,
or down to 6 mm.

An example of the modmg spectrum at 100 GHZ is
shown in Fig. 13. The guide dimensions were optimized at
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Fig. 14." Orthogonal mode filter of single V-groove guide.

X-band [6]: ‘

2c=3\,, d=0.6(2c), 2a=04(2c), > 5(2¢).
There seems no reason why these dimensions' should not
be used at 100 GHz..

* Orthogonal modes (TES mode group [1]) can exist with
relatively high Q factor (about a factor of two down on the
required mode at 100 GHz) and the inclusion of the
orthogonal mode filter is necessary. The guide wavelengths
are 2'to 5 percent greater than the free-space wavelength at
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TABLE III
1L.oss CHARACTERISTIC OF SINGLE V-GROOVE GUIDE AT 100 MHz

9, (x10%) o

2¢ (nm) a (mm) 0 (x10%) (aB/m)
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100 GHz. A mode filter at 100 GHz has been constructed
with good performance by including a thin metal sheet at
the central level of the groove region (Fig. 14).

Experimental guide attenuation constants at 100 GHz
are given in Table III. The experimental loss is shown to
be from 0.3 to 0.6 dB/m (c.f. the dominant TE,, mode
rectangular waveguide at 100 GHz (WG 28) constructed
from silver has an experimental attenuation constant of 5
dB/m [7]). The mode filter has not been included in these
measurements. No attempt has been made to minimize this
loss by guide surface treatment.

Our conclusion from a wide range of experimental mea-
surements at 100 GHz and at X-band is that the guide
characteristics are very close to those predicted for disper-
sion. Dimensions are optimized for moding behavior. The
attenuation measurements are also encouraging in that the
experimental loss is relatively low, even for a guide con-
structed from aluminum by conventional workshop tech-
niques.

V. CONCLUSIONS

A conformal mapping technique for single-groove guide
has been discussed. The wave equation for grooves of
arbitrary cross section has been given. With appropriate
matching of boundary values, the scaling factor, 4(x, y),
has been formulated for grooves of V-shaped cross section.
Also, with appropriate boundary conditions to the as-
sumed solution of the wave equation, the characteristic
equation has been obtained. The open-type transforma-
tion, parameterization, and trapezoidal rule have been
applied to evaluate numerically complex integrands with
singularities which must be solved before 4(x, y) and the
propagation characteristics can be found.

Experimental measurements at X-band and 100 GHz
confirm that with appropriate choice of guide dimensions,
the guide is low loss, low dispersion, single mode, and easy
to manufacture. Theoretical analysis on the guide wave-
length showed that the agreement to experimental results
is very good.

The single V-groove guide has an advantage over its
rectangular-groove counterpart for normal propagation
since the attenuation is lower, the rejection of higher
modes is more effective, and the orthogonal mode filter is
easily constructed.

APPENDIX
FORMULATION OF THE SCALING FACTOR, A(x, y)

The scaling factor, A(x, y), which is necessary for the
determination of the propagation characteristics of single
V-groove guide, has been given in Section II-B-1. This
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Fig. 15. Transformation planes from the V-groove guide to the H guide.

section describes the manipulation for obtaining the scale
factor, h(x, y), by a transformation from the V-shaped
groove waveguide to a parallel-plate waveguide which is
partially filled with a nonisotropic and nonuniform
medium. The transformation would inevitably employ the
upper half-plane as the intermediate step [8], [9].

A. Schwartz - Christoffel Transformation and Boundary
Value Matching

Consider one quarter of the cross section of the V-groove
guide. The transformation from the V-groove guide to the
parallel-wall guide involves the upper half-plane as the
intermediate step. They are shown in Fig. 15. By the
Schwartz—Christoffel theorem,

at —80/n 7 — -
_—kl(T—IO)l/z b/ (T_l)o/ l(T+1) 172 (Al)
and

dz
— =k (T-1)"YXT+1)" V2
77 AT-1)"7(T+1)

Consider the transformation from the T plane to the Z
plane:

(A2)

az ok, k
ar yr2-1 i—71?’
Hence Z=Fksin ! T+ B.

Matching boundary values at T= 11 with Z=+¢/2
(Fig. 15) gives

T=sin(7Z/c).
Rearranging (A1) and (A2) yields
du T—ry|1/2=8/
P
where k;=k,/k, and k, = jk= jc/w. Since 6/7 <1/2,

ie., 8 <a/2, assume that U is a function of r only, i.e.,
1/2—60/7
(T-r)
(T-1)'"""(T+1)

(=1<r<r)

(A3)

U=f(r) =k1f_’ dT + k,

=k1/j1G(T)dT+ k,

where
(T_ r0)1/2-9/-rr
(T-1)"""(r+1)"*

G(T) =
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Matching boundary values at

r'—_—’—l giVCS U=Ul(0,0)=U1=k4
r=+1 giVCS U=U2(b,0)=U2
r=r, gves U=U/(c,a)=U;

U, Uy = klfjllG(T) dT (A4)

U,—U,=k, fjlc(T) dT. (A5)

Hence

(]
v~ U, fblG(T)dT

~U, [“G(T)dT'

(A6)

Since the coordinates of U,, U,, and U, are known, #, can
be determined from (A6). Also, since

h(x, y) =|dU/dZ|

and r, has been determined, h(x, y) can be found from
(A3). However, the integrands of the integrals in (A6) are
complex and contain singularities at both lower and upper
limits, and these singularities must be remioved before
integration can be performed numerically. These difficul-
ties will be dedlt with in the following sections.

B. Open-Type Transformation

In this subsection, the method of open-type transforma-
tion is used to remove the singularities. The integrands are
partitioned into forms that can be transformed to a non-
singular integrand. Consider the following integral:

w, (w)
= f (W Wl)p

where w, >w,. Clearly I has an integrand which has
- singularity at w = w,. Let

P=w—w

where
1

1
ie.,

op=¢-1
and

dw=¢z%"1dz.

When w=w,;, z=0 and when w=w,, z=z=
w; )%, Therefore,

(w, -
Zy F(Z)
I=f0 S p

=¢j:lF(z) dz

where

F(z)=f(z*+w,).
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After the above transformation, the integrand f(w)/
(w —wy)? with singularity at w ==w, is transformed into
an integrand, F(z), which contains no singularity.

C. Parameterization

Although the integrand has no singularity after the
open-type transformation, it is complex and multivalued.
Integration of the complex variable requires splitting the
complex integrand into real and imaginary parts. Let

G(T) = A(R,S)+ jI(R,S)

flG(T)dT=fl(A+jI)d(R+jS)

- fl(AdR— 1dS)+ jfl(IdR + AdS).

In parametric form, R and S can be written as

R=R(t)
and

S=38(z).
Then,

A= A(t)
and

I=1(1).
"Therefore,

flG(T)dT=ft2[A(t)R(t)—I(t)S(t)] dt
+jft2[;f(t)R(t)+A(t)5;(t)] dt.

In this way, the parameterization has altered the integra-
tion to two real integrations of réal variables. A carefully
chosen path for integration is necessary because different
paths of integration will usually give different results,
owing to the fact that the paths may lie on different
Riemann surfaces.

D. Evaluation of the Complex Integration

After introducing thie open-type transformation and the
parameterization shown in subsections B and C, let us
consider the evaluation of the integrals on the right-hand
side of (A6), namely

- [*G(T)ar
-1
-/ G(rydr+ ["'G(r)dr+ [* G(T)dT
-1 0 +1
=In+1,+1,
12=f_+1lG(T)dT
=f° G(T)dT+f“G(T)dT

=Iy+ 122
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where
1/2-8/7
(T_ro) /28
(T-1)'""""(T+1)"*

1) Evaluation of I,;: The integrand has singularity at
T = + 1. Following the transformation shown in subsection
B and letting

G(T) =

1/2-8/n
(T“"o) 72
(T+1)"?

a nonsingular integrand is obtained. The integral is then
separated into two real integrals using the method outlined
in subsection C. The path of integration is chosen along
the real axis (R =t¢, S =0) to obtain a simple parameter-
ization. The integrand is multivalued and principal values
of the integrand are used in the evaluation of the integral.
The trapezoidal rule is used for the evaluation of the
integration.

2) Evaluation of I,;: The integrand has singularity at

= —1. The method of integration is the same as that in
subsection D-1 but with

H(T) =

2—8/m
(1)
(T_l)l—a/-ﬂ

3) Evaluation of I,,: The integrand, I,, in this case, has
singularity at the upper limit, i.e. 7= +1, which is not of
the same type as that described in subsections D-1 and
D-2, where the singularity occurs at the lower limit. If the
same method is used to transform I, ie., z#=T-1,
where ¢ =x/6, the real axis in the T plane will be
transformed into a straight line of finite slope in the upper
half Z plane. This may give a wrong computation since
points in the upper half Z plane usually lie in a Riemann
surface different from those points in the real axis of the
upper half Z plane. The transformation may be modified
as follows. Let

A1) =

(T_ r0)1/2~0/71

f(T)_W

and

z?=1-T
where

1

"5

and
p=1-48/7.

Similar to the transformation shown in subsection B, an
integral with a nonsingular integrand is obtained, i.e.,

z%=1-T
where

o=x/0

T=1-2z%
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Le.,
dT = —¢z*~1dz.

When T=0, z?=1, i.e. z=1 for ¢ + 0, and when T =1,
z%=0,1ie z=0 for ¢ #0:
1/2-8/7

(—¢)z*tdz

0 (1—z¢—r)
122=j; !

T a\l/2p o eN1-0/7
(2-2%)7(=2%)

e plimgme
(_1)1—9/71 0 (2_Z¢)1/2

The significance lies in the fact that the real axis in the T’
plane is mapped to the real axis in the Z plane by this
transformation. Again, the trapezoidal rule is used for the
evaluation of the integration.

Having evaluated I, and I,, r, can be determined by
using (A6). Moreover, k; can be calculated from (A4) or
(AS5), in which

dz.

U2_U1 U3_U1
k1= 1 = o .
[le(ryar  [*G(r)ar
-1 -1

Hence
N dUu f {T—ro 1/2-0/w
(Xd’)-‘ﬁ}—l | —
where
k k
ky=— = —
2 Je/m
T
T=sm(—Z) =sin[—(x+]y)]
¢
Therefore,

T
sin[:(x+ jy)] —7,
h(x’y)='k3| T
sin[
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