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Theoretical and Experimental Characteristics of
Single V-Groove Guide for X-Band

and 100 GHz Operation

YAT MAN CHOI, MEMBER, IEEE, DOUGLAS J. HARRIS, AND KIM-FUNG TSANG

Abstract —A conformal mapping technique for single-groove guide has

been discussed and applied to grooves of V-shaped cross sectfou. Experi-

mental measurements at X-band and 100 GHz confirm the theoretical

predictions. The characteristic equation and scale factor of the fundamen-

tal mode have been developed, and its propagation characteristics are given

graphically for severaf normafiied groove dimensions.

I. INTRODUCTION

GROOVE GUIDE is potentially attractive as a low-loss

waveguide for frequencies above 100 GHz, where the

loss characteristics, dimensional tolerances, and power-

handling capacity of the more conventional guides such as

rectangular waveguide and microstrip become progres-

sively prohibitive. At frequencies above 100 GHz, this

guide becomes increasingly attractive, and a complete sys-

tem in groove guide including generation, transmission,

manipulation, and detection could be ideal. This guide as

shown in Fig. 1 has previously been analyzed and sum-

marized by a conformal mapping technique [1] which has

been applied to guides with grooves of V-shaped cross

section [2], and by a transverse resonance technique which

has been extended to obtain an approximate but adequate

solution for guides with grooves of rectangular cross sec-

tion [1], [3].

Harris [4] had shown experimentally that the V-groove

guide has propagation characteristics very similar to those

of the rectangular-groove guide, except that the attenua-

tion was lower and the rejection of higher modes was more

effective. However, theoretical analysis is more complex

and tedious.

Fig. 1. The grooved waveguide.

requires a known form of field expressions in the central

groove and evanescent regions. The conformal lmapping

technique provides a direct analy>is on the V-groove guide.

The present analytical approach is to transform the V-

groove guide into the parallel-wall guide filled with a

nonisotropic and nonuniform medium.

II. CONFORMAL MAPPING TECHNIQUE FOIR

SINGLE-GROOVI~ GUIDE

A. The Wave Equation for Grooves of Arbitrary

Cross Section

The grooved waveguide has been analyzed by a confor-

mal mapping technique [5] which is based on a comparison

of a deformed-wall guide containing no dielectric and a

real parallel-wall guide filled with a nonisotropic and

nonuniform medium (Fig. 2).

The wave equation for the latter guide is given by

V:@(X, Y)+ k:h2(x, ,Y)@(x, y) = O (1)

It is well known that waveguide of any shape in cross

section can be mapped into a desired shape of cross
where kC = ~~ is the cutoff wavenumber, h (x, y) is

section for analysis. The transverse resonance technique
the scaling factor of the conformal transformations be-

tween the two coordinate systems, and O(X, y) is the wave
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function. O(X, y) = H,(x, y) and E=(x, y) for TE and TM

modes, respectively.

To transform the above solution from the Z space into

the U space, we have

Whenever suitable solutions of @(x, y) are found for the

pertinent boundary conditions, the transverse components

can readily be found by using Maxwell’s equations. The
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Fig. 2. Parallel-wall waveguide. (a) Deformed-wall guide. (b) Parallel-
wall guide with nonuniform and anisotropic medium.

last step in this procedure is to transform the above

solution from the Z space into the U space by using(2).

B. Grooves of V-Shaped Cross Section [2]

1) Scaling Factor h(x, y): The scale factor is obtained

by using the Schwartz-Christoffel theorem:

h(x, y)= ;

where

I‘in[3x+Jyl-’o”

‘*[3x+Jy+1.

/2- 0/77

(T-ro)’/2-0i”
G(T) =

(T-l) l-o/”(T+l)l/’

‘=sin[:(x+’yi
()fl=tan-l ~ .

(3)

Here a, b, c, and d are the dimensions of the guide as

defined in Fig. 1, and x and y represent the coordinates in

the parallel-wall guide. The manipulation for obtaining

this scale factor is described in the Appendix.

The determination of the constant r,, which depends on

the width 2a and depth d of the groove, is tedious, and

can be obtained with the following expression:

JrOG(T)dT ~+ j.

j:: ( )‘lGT dT= b
(4)

which is obtained by matching the boundary values before

and after the transformation in the complex planes. Plots

of r. versus d/2c, with 2a /2c = 0.4, and of r, versus

2a/2c, with d/2c = 0.6, are shown in Figs. 3 and 4,

respectively. Knowing h (x, y), we can find the longitudi-

nal terms of the relative permeability and permittitity,

which permit determination of the field distribution in the

groove guide from those in the dielectric-filled parallel-wall

guide according to Fig. 2.

~ L.,.=.,
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Fig. 3. Graph of r. versus normalized groove depth d/2c.
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Fig. 4. Graph of r. versus normalized groove width 2a\2c.
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Fig. 5. Cross section of the hypothetical guide.

2) Secular Equation of the TE; Mode: Assume that in

region A, where – a c y < a, the guide is filled with a

hypothetical medium as described by (2). In region B,

where y > Ia I and h (x, y) =1, the guide is uniformly filled

(Fig. 5).
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The assumed solutions of the wave equation for the TE;

modes are expressed below. The factor exp (j(tit – #z)),

which is common to all of the field equations, will be

omitted for brevity.

In region A,

Hz. = ~APsin(kX~x)cos (kY~y) (5a)

P

and in region B,

where

Ap, B,

kC

A=

k XA

k XB

k yA

jkyB

HZB = ~BFsin(kX,x)exp(– kyB.Y) (5b)
r

amplitude constants of field components in re-

gions A and B, respectively,

= 27r/A., cutoff wavelength of the groove guide,

cutoff wavelength,

= pr/2 c, wavenumber in region A,

= rn/2c, wavenumber in region B,

< q~/2 a, wa.venumkm in y direction in re-

gion A,

wavenumber in y direction in region B.

The dimensions of the guide, 2a and 2c, were given in

Fig. 1.

Using the first-order approximation (p= r =1), there

are the following relations between the wavenumbers:

k;A + k;A = KOk~ (6a)

k~~–k;B=k2 c (6b)

where

1
KO =

()
2ac ~+~

J::J:j’(x,Y)ms2( ;)cos2(;)dYdx.

The boundary conditions imposed between regions A and

B (y= a) are

(i) HZA = HZB for–c<x<c

@) ~HzA/~Y = ~H,B/~Y for–c<x<c

(iii) aHzA/ays aHzB,/ay = o at x = + C.

After applying the boundary conditions to the assumed

solution of the wave equation, we obtain the following

secular equation:

kY, =kyAtan(kyAa). (7)

Equations (6a), (6b), and (7) can be solved for kYA, kYB,

and k, in the first-order approximation.
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2C=1OIOJJ, a-d

2C=1*, 2a= G.4(2c)
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Graph of guide attenuation constant versus normalized groove
depth d/2c at 96 GHz.

III. PROPAGATION CHARACTERISTICS

A. Attenuation Constant

The attenuation constant for the V-groove guide is given

by [5]:

[1
2 1/2

~g= ~gp[fc/fcp]4 >:;;/2 G

where

agP = &[ f,p/f 12[1 – (f.p/f)21-1i2, the attenuation
o

constant of an air-filled parallel-plane waveguide,

f CP
cutoff frequency of the parallel-plane waveguide,

f. cutoff frequency of the groove guide,

f operating frequency,

G = A + B(f/fC)2[l – (fc/f)2], a length factor

which could be calculated from the wave function

and in general A>> B,

R, surface resistivity of the guide wall,

Z. intrinsic impedance of free space,

2C plane separation of the parallel-plane guide,

A, B constants calculated from the wave function.

A plot of the guide attenuation ccmstant versus d/2c at 96
GHz is shown in Fig. 6. It can be seen that the calculated

attenuation constant is very low compared to that of the

dominant-mode rectangular waveguide (2 dB\m at 100

GHz).

B. Cutoff Wavelength

Recall from (6b) that the cutoff wavelength X. is given

by

Fig. 7 shows the cutoff wavelength versus the normalized

groove depth d/2c. It is seen that the guide is operating

well above the cutoff.



718 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 4, APRIL 1988

2C=I &m, a=d

..,----- -
,. .-. .

/“ ““

2C=I onnn , a=d

~::l:---”:::;~:;~
2c=10mm, 2a=0.4[2c)

d/2c
*

0.0 0.2 0.4 0.6 0.8

Fig. 7. Graph of cutoff wavelength versus the normalized groove depth

d/c.
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Fig. 8. Graph of guide wavelength versus the normalized groove depth
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Fig. 9. Product of kYA a versus normalized groove half-width a/2 c.

C. Guide Wavelength

The guide wavelength ~g is determined by

111

i.e.,

1
Ag =

@/Ao)2-(1/Ac)2 “

d/2c=0 .6

d/2c=0 .4

d/2c=0.2

/’

/’ ‘
/. ---- ————~ 4.

0.2 0.4 0.6 0.8

Fig. 10. Product of kYBa versus normalized groove half-width a /2c.

Fig. 8 shows the guide wavelength versus the normalized

groove depth d/2 c. It is seen that the theoretical guide

wavelength is slightly larger than the free-space wave-

length; i.e., the dispersion is low.

D. Wavenumbers

The wavenumbers kY~ and kY~ can be solved from (6a)

and (7). Figs. 9 and 10 show the product of kY~ a and

kY~a, respectively, versus the normalized groove half-width

a/2 c. From Fig. 9 the fraction of a sinusoid across the

groove half-width can be determined, while from Fig. 10

the attenuation in the y direction for a distance of half the

groove width can be determined.

IV. MEASUREMENTS OF THE PROPAGATION

CHARACTERISTICS OF SINGLE V-GROOVE

GUIDE AT 100 GHz AND AT X-BAND

Measurement of the guide characteristics at 100 GHz

had been made at the University of Wales Institute of

Science and Technology, United Kingdom, using a reso-

nance technique with a movable short-circuited plunger

[3]. Measurements at X-band were conducted at the Hong

Kong Polytechnic, Hong Kong, using a resonance tech-

nique with a swept frequency source [2]. A block diagram

of the measuring system for single V-groove guide at

X-band is shown in Fig. 11 and that at 100 GHz is given in

[3].

The experimental and theoretical guide wavelengths Ag

of the guides under test are given in Tables I and 11. The

correlation between theoretical and experimental values of

Ag is very good indeed (within 0.4 percent at 100 GHz and

3.7 percent at X-band). A graph of guide wavelength

versus frequency at X-band is shown in Fig. 12. Since at

100 GHz a movable short-circuited plunger was used, the

errors due to the coupling holes of the end plates were

removed. Therefore, the error between predicted and mea-

sured guide wavelength is significantly higher in X-band

than at 100 GHz.

When the measured guide wavelengths Ag are compared

with the operating wavelength A ~ at 100 GHz and at
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TABLE I

GUIDE WAVELENGTHS AT A.= 3.117 mm
--------------------------------------------------------------------------

G“ Ide theoretical experimental

dlmensions(* ) calculat ions results % of

error

2C d Ac Ag Ag

(m) (mm) (m) [~) (m)
--------------------------------------------------------------------------

10 2 20.14 3.155 3.156 0.03

10 4 22.10 3.148 3.146 0.06

10 6 22..51 3.147 3.136 0.35

12 2 24.01 3.144 3.146 0.06

12 4 26.05 3.139 3.138 0.03

12 6 26.84 3.138 3.130 0.26
-- ——.—. —. —.... L ___________________________________________________________

(*) Other guide dimensions: 2a= 2d; 2h = 60 mm.

TABLE II

GUIDE WAVELENGTHS AT X-BAND

Guide Theocetlc.1 EXpe Kimental
dimensions calculations results * of

(m) er.or

% ~c ‘9
m Ao ~9

(GHz) (cm) (cm) (cm) (cm)
------------------ __________________________________________

8.02 3.655 25 3.741 4.000 3.625

2c=1.5 8.30 3.717 26 3.615 3.846

d=4 .5

3.354

8.53 3.611 27 3.517 3.704 2.511

2a= 3 8.87 3.465 28 3.382 3.571 2.968

2h= 60 9.15 3.355 29 3.279 3.448 2.697

1. 50 9.42 3.254 30 3.185. 3.333 2.370 -

9.695 3.157 31 3.094 3.226 2.139

9.975 15.52 3.066 32 3.008 3.125 1.888

10.25 2.980 33 2.927 3.030 1.650

10.54 2.895 34 2.846 2.941 1.564

10.81 2.820 35 2.775 2.857 1.295

11.085 2.748 36 2.706 2.778 1.079

11.375 2.676 37 2.637 2.703 0.999

11.67 2.607 38 2.571 2.632 0.949

11.97 2.539 39 2.506 2.564 0.975

12.26 2.501 40 2.469 2.500 0.040

X-band, it is seen that, as expected, the guides under test

will have relatively low dispersion, because both wave-

lengths are within 1.3 percent and 6.5 percent, respectively;

of each other.

When the measured moding spectra for different groove

dimensions at 100 GHz were examined, there is little

indication of higher order or rank modes:

a) for a plane separation of 10 and 12 mm and right-

angled V-groove depths of 2 mm to 6 mm;. and

b) when a 50 cm ‘length of guide is distorted to give

central plane separation up to 12 mm from 10 mm,

or down to 6 mm.

An example of the moding spectrum at 100 GHz is

shown in Fig. 13. The guide dimensions were optimized at

,
.

x

.
.. .

2
I

‘~z
8 9 10 11 12 f(r,,)

Fig. 12. Graph of guide wavelength vers US frequency at X-band. —
Theoretical guide wavelength; x X X X X experimental guide wave-

length; - ~-. --- free-space wavelength.

L (- .

Fig. 13, Moding spectrum for a V-groove waveguide cavity of variable
length at 100 GHz: 2C =10 mm, 2a= 6 mm, d = 3 mm.

< ~~

L— thin resistive

sheet

. W!, . . .. ----- ..-
,,/”

(

Fig. 14. Orthogonal mode filter of single V-groove guide.

X-band [6]:

2C=3A0, d = 0.6(2 c), 2a= 0.4(2 c), 2h > 5(2c).

There seems no reason why these dimensions should not

be used at 100 GHz.

Orthogonal modes (TE{ mode group [1]) can exist with

relatively high Q factor (about a factor of two down on the

required mode at 100 GHz) and the inclusion of the

orthogonal rndde filter is necessa~y. The guide wavelengths

are 2 to 5 percent greater than the free-space wavelength “at

,,
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TABLE III

Loss CHARACTERISTIC OF SINGLE V-GROOVE GUIDE AT 100 MHz
.---- —---- .- —.-- . . . ..---- —.——--. —-——--------- .____ -_ —_____________________

2C (mm) d (m) Q~ (X103) Qu (X104) og (dB/m)
__________________________________________________________________________

2 6.7 2.3
10

0.4
4 5.9 2.3
6

0.4
6.4 1.5 0.6

2 8.5 1.8

12
0.5

4 6.7 3.0

6
0.3

8.1 2.3 0.4
__________________________________________________________________________

100 GHz. A mode filter at 100 GHz has been constructed

with good performance by including a thin metal sheet at

the central level of the groove region (Fig. 14).

Experimental guide attenuation constants at 100 GHz

are given in Table III. The experimental loss is shown to

be from 0.3 to 0.6 dB/m (cf. the dominant TEIO mode

rectangular waveguide at 100 GHz (WG 28) constructed

from silver has an experimental attenuation constant of 5

dB/m [7]). The mode filter has not been included in these

measurements. No attempt has been made to minimize this

loss by guide surface treatment.

Our conclusion from a wide range of experimental ntea-

surements at 100 GHz and at X-band is that the guide

characteristics are very close to those predicted for disper-

sion. Dimensions are optimized for moding behavior. The

attenuation measurements are also encouraging in that the

experiment al loss is relatively low, even for a guide con-

structed from aluminum by conventional workshop tech-

niques.

V. CONCLUSIONS

A conformal mapping technique for single-groove guide

has been discussed. The wave equation for grooves of

arbitrary cross section has been given. With appropriate

matching of boundary values, the scaling factor, h (x, y),

has been formulated for grooves of V-shaped cross section.

Also, with appropriate boundary conditions to the as-

sumed solution of the wave equation, the characteristic

equation has been obtained. The open-type transforma-

tion, parametrization, and trapezoidal rule have been

applied to evaluate numerically complex integrands with

singularities which must be solved before h (x, y) and the

propagation characteristics can be found.

Experimental measurements at X-band and 100 GHz

confirm that with appropriate choice of guide dimensions,

the guide is low loss, low dispersion, single mode, and easy

to manufacture. Theoretical analysis on the guide wave-

length showed that the agreement to experimental results

is very good.

The single V-groove guide has an advantage over its

rectangular-groove counterpart for normal propagation

since the attenuation is lower, the rejection of higher

modes is more effective, and the orthogonal mode filter is

easily constructed.

APPENDIX

FORMULATION OF THE SCALING FACTOR, h (x, y)

The scaling factor, h (.x, y), which is necessary for the

determination of the propagation characteristics of single

V-groove guide, has been given in Section II-B-1. This

]oo:~,,v:J~r ,Jj;x

1’ 2’ -lo+lr –c/2 o
0

+c/2

Fig. 15. Transformation planes from the V-groove guide to the H guide,

section describes the manipulation for obtaining the scale

factor, h (x, y), by a transformation from the V-shaped

groove waveguide to a parallel-plate waveguide which is

partially filled with a nonisotropic and nonuniform

medium. The transformation would inevitably employ the

upper half-plane as the intermediate step [8], [9].

A. Schwartz – Christoffel Transformation and Boundaiy

Value Matching

Consider one quarter of the cross section of the V-groove

guide. The transformation from the V-groove guide to the

parallel-wall guide involves the upper half-plane as the

intermediate step. They are shown in Fig. 15. By the

Schwartz–Christoffel theorem,

#=kl(T–rO) ‘i2-’i”(T-l)o’’-’( T1z2-1z2 (A1)

and

dZ

dT
—=k2(T– 1)-1’2(T+l)-1’2. (A2)

Consider the transformation from the T plane to the Z

plane:

dZ k, k

Hence Z=ksin–l T+B.

Matching boundary values at T= + 1 with Z = + c/2

(Fig. 15) gives

T= sin(~Z/c).

Rearranging (Al) and (A2) yields

dU [1T–r. 1/2 – 0/??
—=

dZ
k3 —

T–1
(A3)

where k3 = kl/kz and k2 = jk = jc/v. Since @/v <1/2,

i.e., O < w/2, assume that U is a function of r only, i.e.,

(T-rO)1i2-oi”
U=f(r) =klJ:l(T_l)l-e/* (T+l)l/2 d7’+k4

(-l<r<r,)

=kl~’ G(T)dT+kA
–1

where

(T-rO)’z2- e/”
G(T) =

(T-l)l-oi~(T+l~’/z”
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Matching boundary values at

r= –I gives U= U1(O, O) =Ul=kd

r= +1 gives U= Uz(b,O) =U.

r=ro gives U= U3(c, a)=U3

.“. U,– U1=kl~~;G(T)dT

U3 –Ul= kl~’lG(T) dT.

Hence

(A4)

(A5)

(A6)

Since the coordinates of Ul, Uz, and U3

be determined from (A6). Also, since

h(X, y) = ldU/dZl

are known, r. can

and r. has been determined, h (x, y) can be found from

(A3). However, the integrands of the integrals in (A6) are

complex and contain singularities at both lower and upper

limits, and these singularities must be renioved before

integration can be performed numerically. These difficul-

ties will be deflt with in the following sections.

B. Open-Type Transformation

In this subsection, the method of open-type transforma-

tion is used to remove the singularities. The integrands are

partitioned into forms that can be transformed to a non-

singular integrand. Consider the following integral:

J
w, f(w)

1= .1 (W-wl)’dw

where w,> W1. Clearly 1 has an integrand which has

singularity at w = W1. Let

where

i.e.,

l+p=+-1

and

dw = ~z$-ldz.

When w = wl, z=O and when W=wz, z=zl=(w2–

WI) l/O. Therefore,

Z, F(Z)
1=~ >-@z+-ldz

= +jzl~(Z) dz
o

where

F(z) =f(z$+wl).

/21

After the above transformation, the integrand f ( w)/

(w – WI)’ with singularity at w== WI is transformed into

an integrand, F’(z), which contains no singularity.

C. Parameterization

Although the integrand has 110 singularity after the

open-type transformation, it is complex and nnultivalued.

Integration of the complex varialble requires splitting the

complex integrand into real and imaginary parts. Let

G(T) =.4( R, S)-t-jl(R, S)

i.e.,

. @dR - ldS) + j@dR +AdS).
1

In parametric form, R and S can be written as

R= R(t)

and

S=s(l).

Then,

A= A(t)

and

I= I(t).

Therefore,

~G(T)dT=~’2[A(t) ~(t) -l(t) ~(t)]dt
[ t,

In this way, the parameterization has altered the integra-

tion to two real integrations of real variables. A carefully

chosen path for integration is necessary because different

paths of integration will ustially give different, results,

owing to the fact that the paths may lie cm different

Riemann surfaces.

D. Evaluation of the Complex Integration

After introducing tlie open-type transformation and the

parameterization shown in subsections B and C, let us

consider the evaluation of the integrals on the right-hand

side of (A6), namely

=~OG(T)dti+~+’G( T)dT+jrOG(T)dT
-1 0 +1

I,= J_~lG(T) dT

=fOG(T)dT+~+lG(T)dT
–1 o
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where

(R-,)112-’””
G(T) =

(T-1) ’-’/’’( T2”)l/2”

1) Evaluation of 111: The integrand has singularity at

T = +1. Following the transformation shown in subsection

B and letting

a nonsingular integrand is obtained. The integral is then

separated into two real integrals using the method outlined

in subsection C. The path of integration is chosen along

the real axis (R = t, S = O) to obtain a simple parametri-

zation. The integrand is multivalued and principal values

of the integrand are used in the evaluation of the integral.

The trapezoidal rule is used for the evaluation of the

integration.

2) Evaluation of IJ1: The integrand has singularity at

T = – 1. The method of integration is the same as that in

subsection D-1 but with

f(T) = (T- ro)l/2-e/”
(T+l-e/T “

3) Evaluation of 122: The integrand, 1X2 in this case, has

singularity at the upper limit, i.e. T = +1, which is not of

the same type as that described in subsections D-1 and

D-2, where the singularity occurs at the lower limit. If the

same method is used to transform 12Z, i.e., #= T-1,

where @= m/0, the real axis in the T plane will be

transformed into a straight line of finite slope in the upper

half Z plane. This may give a wrong computation since

points in the upper half Z plane usually lie in a Riemann

surface different from those points in the real axis of the

upper half Z plane. The transformation may be modified

as follows. Let

~(T) = (T- rO)’/2-o/n

(T+l)’”2

and

~l)=l-T

where

1
+=—

l–p

and

p=l–0/T.

Similar to the transformation shown in subsection B, an

integral with a nonsingular integrand is obtained, i.e.,

#=~-T

where

@= ?7/0

T=l–z@

i.e.,

dT= –@z~-ldz.

When T=O, Z+=l, i.e. z=l for@+O,
z@= O,i.e. z= Ofor @#O:
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and when T =1,

J
, (l-z” -roil’’;’/: n(_@)z,_,dz

12Z=
1 (2– Z+)l’2(– Z$) - ‘

+

/
(

~2_ ,O~l:-”n d.z.
1 l–ro–z+

——
(_l)-Vr , 1

The significance lies in the fact that the real axis in the T

plane is mapped to the real axis in the Z plane by thk

transformation. Again, the trapezoidal rule is used for the

evaluation of the integration.

Having evaluated 11 and 12, r. can be determined by

using (A6). Moreover, IiI can be calculated from (A4) or

(A5), in which

u’ – U1

“= j+ ’G(T)dT = fO~;T:dT”
–1 –1

Hence

[1
T–~.1/2- (l/n

h(x, y)= g = 1’31 —
T–1

where

‘1
k3=; =——

2 jc/v

‘=sin(:z)=sin[:(x+4
Therefore,

h(x, y)=lk31

[1

‘in[:~x+jyl-ro 1’2-0’”

‘in[3x+Jy)F1 “

[1]

[2]

[3]
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